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Abstract: In this paper, we consider the mean-field Heisenberg model with de-
terministic external magnetic field. We prove a large deviation principle for Sn/n
with respect to the associated Gibbs measure, where Sn/n is the scaled partial
sum of spins. In particular, we obtain an explicit expression for the rate function.

1 Introduction

The Ising model and the Heisenberg model are two main statistical mechanical models

of ferromagnetism. The Ising model is simpler and better understood. The limit theorems

for the total spin in the mean-field Ising model (also called the Curie-Weiss model) were

shown by Ellis and Newman [4]. Recently, it was shown by Chatterjee and Shao [1], and

independently by Eichelsbacher and M. Löwe [3], that the total spin satisfies a Berry-

Esseen type error bound of order 1/
√
n at both the critical temperature and non-critical

temperature.

The Heisenberg model is more realistic and more challenging. There are few results on

limit theorems known for this model. Recently, Kirkpatrick and Meckes [6] proved a large

deviation principle and central limit theorems for the total spin in mean-field Heisenberg

model without deterministic external magnetic field. The Berry-Esseen bound for the total

spin in a more general model (i.e., the mean-field O(N) model) with optimal bounds was

obtained in [7] by using Stein’s method. In this paper, we consider the mean-field Heisenberg

model with deterministic external magnetic field. We prove a large deviation principle for

the total spin with respect to the associated Gibbs measure. In particular, we obtain an

explicit expression for the rate function.

Let S2 denote the unit sphere in R3. In this paper, we consider the mean-field Heisenberg

model, where each spin σi is in S2, at a complete graph vertex i among n vertices, n ≥ 1.
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The state space is Ωn = (S2)n with product measure Pn = µ×· · ·×µ, where µ is the uniform

probability measure on S2. The Hamiltonian of the Heisenberg model with external magnetic

field h ∈ R3\(0, 0, 0) can be described by Hn(σ) = − 1

2n

∑n
i=1

∑n
j=1〈σi, σj〉−〈h,

∑n
i=1 σi〉 =

− 1

2n
Sn(σ)2 − 〈h, Sn(σ)〉, (0)where 〈·, ·〉 is the inner product in R3, Sn(σ) =

∑n
i=1 σi is the

total magnetization of the model. Let β > 0 be so-called the inverse temperature. The

Gibbs measure is the probability measure Pn,β on Ωn with density function:

dPn,β(σ) =
1

Zn,β
exp (−βHn(σ)) dPn(σ),

where Zn,β is the partition function:

Zn,β =

∫
Ωn

exp (−βHn(σ)) dPn(σ).

In 2013, Kirkpatrick and Meckes [6] studied limit theorems for the mean-field Heisenberg

model without external magnetic field, i.e., there is no the second term in (1.1). They proved

a large deviation result for the total spin

Sn := Sn(σ) =
n∑
i=1

σi

distributed according to the Gibbs measures. In this paper, we consider the above problem

but with external magnetic field, i.e., we take h ∈ R3, h 6= (0, 0, 0) in the expression of the

Hamiltonian (1.1). The rate function in our main theorem takes a different form from that

of Kirkpatrick and Meckes [6]. Besides, with the appearance of h, the computation of rate

function becomes more complicated.

Before stating our main result, let us recall some basic definitions on the large deviation

principle.

Definition 1.1 (Rate function). Let I be a function mapping the complete, separable

metric X into [0,∞]. The function I is called a rate function if I has compact level sets,

i.e., for all M <∞, {x ∈ X : I(x) ≤M} is compact.

Here and thereafter, for A ⊂ X , we write I(A) = infx∈A I(x).

Definition 1.2 (Large deviation principle). Let {(Ωn,Fn,Pn), n ≥ 1} be a sequence of

probability spaces. Let X be a complete, separable metric space, and let {Yn, n ≥ 1} be a

sequence of random variables such that Yn maps Ωn into X , and I a rate function on X .
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Then Yn is said to satisfy the large deviation principle on X with rate function I if the

following two limits hold.

(i) Large deviation upper bound. For any closed subset F of X

lim
n→∞

sup
1

n
logPn {Yn ∈ F} ≤ −I(F ).

(ii) Large deviation lower bound. For any open subset G of X

lim
n→∞

inf
1

n
logPn {Yn ∈ G} ≥ −I(G).

Throughout this paper, X denotes a complete, separable metric space. The unit sphere

and the unit ball in R3 are denoted by S2 and B2, respectively. The inner product and

the Euclidean norm in R3 are, respectively, denoted by 〈·, ·〉 and ‖ · ‖. For x ∈ R3, we

write x2 = 〈x, x〉. For a function f defines on (a, b) ⊂ R with limx→a+ f(x) = y1 and

limx→b− f(x) = y2, we write f(a) = y1 and f(b) = y2.

The following result is so-called the tilted large deviation principle, see [5; p. 34] for a

proof.

Proposition 1.3. Let {(Ωn,Fn,Pn), n ≥ 1} be a sequence of probability spaces. Let {Yn, n ≥ 1}
be a sequence of random variables such that Yn maps Ωn into X satisfying the large devia-

tion principle on X with rate function I. Let ψ be a bounded, continuous function mapping

X into R. For A ∈ Fn, we define a new probability measure

Pn,ψ =
1

Z

∫
A

exp [−nψ(Yn)] dPn,

where

Z =

∫
Ωn

exp [−nψ(Yn)] dPn.

Then with respect to Pn,ψ, Yn satisfies the large deviation principle on X with rate function

Iψ(x) = I(x) + ψ(x)− inf
y∈X
{I(y) + ψ(y)} , x ∈ X .

Kirkpatrick and Meckes [6] used Sanov’s theorem [2; p. 16] to prove the following large

deviation principle for Sn/n in the absence of external magnetic field, i.e., in the expression

of the Hamiltonian (1.1), letting h = (0, 0, 0). Their result reads as follows. Note that in

Theorem 5 in Kirkpatrick and Meckes [6], the author missed to indicate the case where

β > 3.
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Theorem 1.4. [6; Theorem 5] Consider the mean-field Heisenberg model in the absence of

external magnetic field. Let Sn =
∑n

i=1 σi. Then Sn/n satisfies a large deviation principle

with respect to the Gibbs measure Pn,β with rate function

I(x) =


a coth(a)− 1− log

(
sinh(a)

a

)
− βx2

2
if β ≤ 3,

a coth(a)− 1− log

(
sinh(a)

a

)
− βx2

2
+ log

(
sinh(b)

b

)
− β

2

(
coth(b)− 1

b

)2

if β > 3,

where a is defined by coth(a)− 1

a
= ||x||, and b is defined by coth(b)− 1

b
=
b

β
.

2 Main result

In the following, we prove a large deviation principle for the mean-field Heisenberg

model with external magnetic field. The proof relies on Cramér theorem (see, e.g., [2; p.

36]) and the titled large deviation principle (Proposition 1.3). The following theorem is the

main result of this paper. For all n ≥ 1, since σi takes values in S2 for 1 ≤ i ≤ n, we see

that
∑n

i=1 σi/n takes values in B2. Differently from Kirkpatrick and Meckes [6; Theorem

5] (Theorem 1.4 in this paper), when we consider the mean field Heisenberg model with

external magnetic field, the rate function in Theorem 2.1 takes only one form for all β > 0.

In Theorem 2.1 below, if h = (0, 0, 0), then the rate function Iψ(x) coincides with the rate

function I(x) in Theorem 1.4 for the case where β > 3.

Theorem 2.1. Consider the mean-field Heisenberg model with the Hamiltonian in [1.1]. Let

Sn =
∑n

i=1 σi. Then Sn/n satisfies a large deviation principle with respect to the measure

Pn,β with rate function

Iψ(x) = a coth(a)− 1− log
sinh(a)

a
− β

2
x2 − β〈h, x〉+ log

sinh(b)

b
− β

2

(
coth(b)− 1

b

)2

,

where a is defined by coth(a)− 1

a
= ||x||, b is defined by coth(b)− 1

b
=
b

β
− ||h||.

Proof. From the definition of the product measure, with respect to Pn, {σi}ni=1 are inde-

pendent and identically distributed random variables, uniformly distributed on (S2)n. For

t ∈ R3 \ (0, 0, 0), we have

E (exp (〈t, σ1〉)) =

∫
S2

exp (‖t‖〈t/‖t‖, x〉) dµ(x). (1)
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By the symmetry, we are freely to choose our coordinate system, so we choose the Oz to

lie along the vector t. Using the spherical coordinate as:

x1 = sinϕ cos θ, x2 = sinϕ sin θ, x3 = cosϕ,

where

0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π, x = (x1, x2, x3), t/‖t‖ = (0, 0, 1).

Then the Jacobi is

|J | = sinϕ.

The right hand side in (1) is computed as follows:∫
S2

exp (‖t‖〈t/‖t‖, x〉) dµ(x) =
1

4π

∫ 2π

0

∫ π

0
exp (‖t‖ cosϕ) sinϕdϕdθ

=
1

2

∫ π

0
exp (‖t‖ cosϕ) sinϕdϕ

=
sinh(‖t‖)
‖t‖

.

(2)

Combining (1) and (2), the cumulant generating function of σi is

c(t) = logE (exp (〈t, σi〉)) = logE (exp (〈t, σ1〉)) = log

(
sinh(‖t‖)
‖t‖

)
. (3)

Since lim‖t‖→0 (sinh(‖t‖)/‖t‖) = 1, we conclude that (2) holds for all t ∈ R3. Therefore, by

applying Cramér’s large deviation principle for i.i.d. random variables (see, e.g., [2; p. 36]),

we have Sn/n satisfies a large deviations principle with respect to the measure Pn with rate

function

I(x) = sup
t∈R3

{〈t, x〉 − c(t)} , x ∈ B2, (4)

where c(t) is the cumulant generating function of σ1 defined as in (3). Since I(x) = 0 if

x = (0, 0, 0), it remains to consider the case where x 6= (0, 0, 0). We have

〈t, x〉 − c(t) ≤ ‖t‖.‖x‖ − log
sinh(‖t‖)
‖t‖

.

Set

y(u) = ‖x‖u− log
sinh(u)

u
, u > 0.

We then have

y′(u) = ‖x‖ − coth(u) +
1

u
, y′′(u) =

1

sinh2(u)
− 1

u2
< 0 for all u > 0.
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On the other hand, limu→0+ y
′(u) = ‖x‖ > 0, limu→∞ y

′(u) = ‖x‖− 1 ≤ 0. These imply the

equation

‖x‖ = coth(u)− 1

u

has a unique positive solution a and y(u) attains the maximum at a. It follows that

sup
t∈R3\(0,0,0)

{〈t, x〉 − c(t)} = sup
u>0

y(u)

= ‖x‖a− log

(
sinh(a)

a

)
=

(
coth(a)− 1

a

)
a− log

(
sinh(a)

a

)
= a coth(a)− 1− log

(
sinh(a)

a

)
> 0.

(5)

Combining (4) and (5), we have

I(x) = a coth(a)− 1− log

(
sinh(a)

a

)
, (6)

where a is defined by ‖x‖ = coth(a)− 1/a.

By (1.1), we can write the Hamiltonian as

Hn(σ) = − 1

2n
Sn(σ)2 − 〈h, Sn(σ)〉.

Correspondingly, we have the Gibbs measure

Pn,ψ(A) =
1

Z

∫
A

exp [−βHn(σ)] dPn(σ)

=
1

Z

∫
A

exp

[
−β
(
−S

2
n

2n
− 〈h, Sn〉

)]
dPn(σ)

=
1

Z

∫
A

exp

[
−n

(
−β
2

(
Sn
2n

)2

− β〈h, Sn
n
〉

)]
dPn(σ)

=
1

Z

∫
A

exp

[
−nψ

(
Sn
n

)]
dPn(σ),

(7)

where ψ(x) = −β
2
x2 − β〈h, x〉. From (4), (5) and (7), by applying Proposition 1.3, we

conclude that Sn/n satisfies a large deviation principle with respect to the Gibbs measures

Pn,ψ with rate function:

Iψ(x) = I(x) + ψ(x)− inf
y∈B2
{I(y) + ψ(y)}

= a coth(a)− 1− log

(
sinh(a)

a

)
− β

2
x2 − β〈h, x〉 − inf

y∈B2
{I(y) + ψ(y)} , x ∈ B2,

(8)
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where a is defined by ‖x‖ = coth(a)− 1/a. Now, we will compute

inf
y∈B2

{I(y)− ψ(y)} .

By (6) and the fact that |〈h, x〉| ≤ ‖h‖‖x‖, we have

inf
y∈B2

{I(y) + ψ(y)} = inf
a≥0

{
a coth(a)− 1− log

sinh(a)

a
− β

2

(
coth(a)− 1

a

)2

− β‖h‖
(

coth(a)− 1

a

)}

= inf
a≥0

{(
coth(a)− 1

a

)
(a− β‖h‖)− log

sinh(a)

a
− β

2

(
coth(a)− 1

a

)2
}
.

(9)

Let

f(u) =

(
coth(u)− 1

u

)
(u− β‖h‖)− log

sinh(u)

u
− β

2

(
coth(u)− 1

u

)2

, u > 0.

We have

f ′(u) =

(
1

u2
− 1

sinh2(u)

)(
u− β

(
coth(u)− 1

u

)
− β‖h‖

)
. (10)

Let

g(u) = u− β
(

coth(u)− 1

u

)
− β||h||, u > 0. (11)

Then g(u) = 0 if only if

β =
u

coth(u)− 1/u+ ||h||

=
u2

u coth(u) + ||h||u− 1

:= k(u).

(12)

We have

k
′
(u) =

u2
(
coth(u) + ||h|| − 2/u+ u/ sinh2(u)

)
(u coth(u) + ||h||u− 1)2

.

By elementary calculations, we can show that (see [6; p85])

coth(u)− 2

u
+

u

sinh2 u
> 0 for all u > 0.

It implies that the function k(u) is strictly increasing on (0,∞). Moreover, expanding the

function coth(u) in Taylor series, we have limu→0+ k(u) = 0, limu→∞ k(u) = ∞. This and
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(12) imply that equation k(u) = β has a unique positive solution b, and therefore, from the

definition of g(u) in (11), we have

g(u) < 0 for all u ∈ (0, b), g(u) > 0 for all u ∈ (b,∞). (13)

Since limu→0+ f(u) = 0 and 1/a2 − 1/ sinh2(a) > 0 for all a > 0, combining (10), (11) and

(13), we obtain

inf
a>0

{(
coth(a)− 1

a

)
(a− β‖h‖)− log

sinh(a)

a
− β

2

(
coth(a)− 1

a

)2
}

= f(b) < 0. (14)

Combining (8), (9) and (14), we have for all x ∈ B2,

Iψ(x) = a coth(a)− 1− log
sinh(a)

a
− β

2
x2 − β〈h, x〉 − f(b)

= a coth(a)− 1− log
sinh(a)

a
− β

2
x2 − β〈h, x〉+ log

sinh(b)

b
− β

2

(
coth(b)− 1

b

)2

,

where a is defined by coth(a)− 1

a
= ||x||, b is defined by coth(b)− 1

b
=
b

β
−||h||. This proves

the theorem.
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TÓM TẮT

NGUYÊN LÝ ĐỘ LỆCH LỚN CHO MÔ HÌNH TRƯỜNG

TRUNG BÌNH HEISENBERG VỚI TỪ TRƯỜNG NGOÀI

Trong bài báo này, chúng tôi xét mô hình trường trung bình Heisenberg với từ trường

ngoài tất định. Chúng tôi chứng minh nguyên lý độ lệch lớn cho Sn/n theo độ đo Gibbs,

trong đó Sn là tổng spin. Đặc biệt, chúng tôi thu được biểu thức tường minh cho hàm tốc

độ.
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